Mister Exam

Other calculators:


-1/n

Limit of the function -1/n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1 \
 lim |---|
n->oo\ n /
limn(1n)\lim_{n \to \infty}\left(- \frac{1}{n}\right)
Limit(-1/n, n, oo, dir='-')
Detail solution
Let's take the limit
limn(1n)\lim_{n \to \infty}\left(- \frac{1}{n}\right)
Let's divide numerator and denominator by n:
limn(1n)\lim_{n \to \infty}\left(- \frac{1}{n}\right) =
limn((1)1n1)\lim_{n \to \infty}\left(\frac{\left(-1\right) \frac{1}{n}}{1}\right)
Do Replacement
u=1nu = \frac{1}{n}
then
limn((1)1n1)=limu0+(u)\lim_{n \to \infty}\left(\frac{\left(-1\right) \frac{1}{n}}{1}\right) = \lim_{u \to 0^+}\left(- u\right)
=
0=0- 0 = 0

The final answer:
limn(1n)=0\lim_{n \to \infty}\left(- \frac{1}{n}\right) = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limn(1n)=0\lim_{n \to \infty}\left(- \frac{1}{n}\right) = 0
limn0(1n)=\lim_{n \to 0^-}\left(- \frac{1}{n}\right) = \infty
More at n→0 from the left
limn0+(1n)=\lim_{n \to 0^+}\left(- \frac{1}{n}\right) = -\infty
More at n→0 from the right
limn1(1n)=1\lim_{n \to 1^-}\left(- \frac{1}{n}\right) = -1
More at n→1 from the left
limn1+(1n)=1\lim_{n \to 1^+}\left(- \frac{1}{n}\right) = -1
More at n→1 from the right
limn(1n)=0\lim_{n \to -\infty}\left(- \frac{1}{n}\right) = 0
More at n→-oo
The graph
Limit of the function -1/n