Mister Exam

Other calculators:


-log(x)/x^2

Limit of the function -log(x)/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-log(x) \
 lim |--------|
x->0+|    2   |
     \   x    /
limx0+((1)log(x)x2)\lim_{x \to 0^+}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right)
Limit((-log(x))/x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010200000-100000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx0((1)log(x)x2)=\lim_{x \to 0^-}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right) = \infty
More at x→0 from the left
limx0+((1)log(x)x2)=\lim_{x \to 0^+}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right) = \infty
limx((1)log(x)x2)=0\lim_{x \to \infty}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right) = 0
More at x→oo
limx1((1)log(x)x2)=0\lim_{x \to 1^-}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right) = 0
More at x→1 from the left
limx1+((1)log(x)x2)=0\lim_{x \to 1^+}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right) = 0
More at x→1 from the right
limx((1)log(x)x2)=0\lim_{x \to -\infty}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right) = 0
More at x→-oo
One‐sided limits [src]
     /-log(x) \
 lim |--------|
x->0+|    2   |
     \   x    /
limx0+((1)log(x)x2)\lim_{x \to 0^+}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right)
oo
\infty
= 114398.997559217
     /-log(x) \
 lim |--------|
x->0-|    2   |
     \   x    /
limx0((1)log(x)x2)\lim_{x \to 0^-}\left(\frac{\left(-1\right) \log{\left(x \right)}}{x^{2}}\right)
oo
\infty
= (114398.997559217 - 71631.4540945009j)
= (114398.997559217 - 71631.4540945009j)
Numerical answer [src]
114398.997559217
114398.997559217
The graph
Limit of the function -log(x)/x^2