$$\lim_{x \to \infty}\left(\frac{- \log{\left(\sin{\left(x \right)} \right)} + \sin{\left(x \right)}}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{- \log{\left(\sin{\left(x \right)} \right)} + \sin{\left(x \right)}}{x}\right) = -\infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{- \log{\left(\sin{\left(x \right)} \right)} + \sin{\left(x \right)}}{x}\right) = \infty$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{- \log{\left(\sin{\left(x \right)} \right)} + \sin{\left(x \right)}}{x}\right) = - \log{\left(\sin{\left(1 \right)} \right)} + \sin{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{- \log{\left(\sin{\left(x \right)} \right)} + \sin{\left(x \right)}}{x}\right) = - \log{\left(\sin{\left(1 \right)} \right)} + \sin{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{- \log{\left(\sin{\left(x \right)} \right)} + \sin{\left(x \right)}}{x}\right) = 0$$
More at x→-oo