Mister Exam

Limit of the function -e^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x\
 lim \-E /
x->0+     
$$\lim_{x \to 0^+}\left(- e^{x}\right)$$
Limit(-E^x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-1
$$-1$$
One‐sided limits [src]
     /  x\
 lim \-E /
x->0+     
$$\lim_{x \to 0^+}\left(- e^{x}\right)$$
-1
$$-1$$
= -1.0
     /  x\
 lim \-E /
x->0-     
$$\lim_{x \to 0^-}\left(- e^{x}\right)$$
-1
$$-1$$
= -1.0
= -1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- e^{x}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- e^{x}\right) = -1$$
$$\lim_{x \to \infty}\left(- e^{x}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(- e^{x}\right) = - e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- e^{x}\right) = - e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- e^{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
-1.0
-1.0
The graph
Limit of the function -e^x