Mister Exam

Other calculators:


-cos(1/x)/x^2

Limit of the function -cos(1/x)/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    /  1\ \
     |-cos|1*-| |
     |    \  x/ |
 lim |----------|
x->0+|     2    |
     \    x     /
$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right)$$
Limit((-cos(1/x))/(x^2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /    /  1\ \
     |-cos|1*-| |
     |    \  x/ |
 lim |----------|
x->0+|     2    |
     \    x     /
$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right)$$
oo*sign(<-1, 1>)
$$\infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
= 3.96548889008278e-74
     /    /  1\ \
     |-cos|1*-| |
     |    \  x/ |
 lim |----------|
x->0-|     2    |
     \    x     /
$$\lim_{x \to 0^-}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right)$$
oo*sign(<-1, 1>)
$$\infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
= 3.96548889008278e-74
= 3.96548889008278e-74
Rapid solution [src]
oo*sign(<-1, 1>)
$$\infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = - \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = - \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = 0$$
More at x→-oo
Numerical answer [src]
3.96548889008278e-74
3.96548889008278e-74
The graph
Limit of the function -cos(1/x)/x^2