$$\lim_{x \to 0^-}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = 0$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = - \cos{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = - \cos{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\left(-1\right) \cos{\left(1 \cdot \frac{1}{x} \right)}}{x^{2}}\right) = 0$$
More at x→-oo