Mister Exam

Other calculators:


log(x)^x

Limit of the function log(x)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        x   
 lim log (x)
x->0+       
$$\lim_{x \to 0^+} \log{\left(x \right)}^{x}$$
Limit(log(x)^x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
        x   
 lim log (x)
x->0+       
$$\lim_{x \to 0^+} \log{\left(x \right)}^{x}$$
1
$$1$$
= (1.00048226867183 + 0.000790877997040114j)
        x   
 lim log (x)
x->0-       
$$\lim_{x \to 0^-} \log{\left(x \right)}^{x}$$
1
$$1$$
= (0.999474651596538 - 0.000654397275377553j)
= (0.999474651596538 - 0.000654397275377553j)
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \log{\left(x \right)}^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(x \right)}^{x} = 1$$
$$\lim_{x \to \infty} \log{\left(x \right)}^{x} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \log{\left(x \right)}^{x} = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(x \right)}^{x} = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(x \right)}^{x} = 0$$
More at x→-oo
Numerical answer [src]
(1.00048226867183 + 0.000790877997040114j)
(1.00048226867183 + 0.000790877997040114j)
The graph
Limit of the function log(x)^x