Mister Exam

Other calculators:

Limit of the function log(x^2+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        / 2      \
 lim log\x  + 2*x/
x->0+             
$$\lim_{x \to 0^+} \log{\left(x^{2} + 2 x \right)}$$
Limit(log(x^2 + 2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
        / 2      \
 lim log\x  + 2*x/
x->0+             
$$\lim_{x \to 0^+} \log{\left(x^{2} + 2 x \right)}$$
-oo
$$-\infty$$
= -8.19804051398379
        / 2      \
 lim log\x  + 2*x/
x->0-             
$$\lim_{x \to 0^-} \log{\left(x^{2} + 2 x \right)}$$
-oo
$$-\infty$$
= (-8.18273783923912 + 3.14159265358979j)
= (-8.18273783923912 + 3.14159265358979j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \log{\left(x^{2} + 2 x \right)} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(x^{2} + 2 x \right)} = -\infty$$
$$\lim_{x \to \infty} \log{\left(x^{2} + 2 x \right)} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \log{\left(x^{2} + 2 x \right)} = \log{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(x^{2} + 2 x \right)} = \log{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(x^{2} + 2 x \right)} = \infty$$
More at x→-oo
Numerical answer [src]
-8.19804051398379
-8.19804051398379