Mister Exam

Other calculators:


log(x)^2/sqrt(x)

Limit of the function log(x)^2/sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2   \
     |log (x)|
 lim |-------|
x->oo|   ___ |
     \ \/ x  /
limx(log(x)2x)\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right)
Limit(log(x)^2/sqrt(x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxlog(x)2=\lim_{x \to \infty} \log{\left(x \right)}^{2} = \infty
and limit for the denominator is
limxx=\lim_{x \to \infty} \sqrt{x} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(log(x)2x)\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right)
=
limx(ddxlog(x)2ddxx)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x \right)}^{2}}{\frac{d}{d x} \sqrt{x}}\right)
=
limx(4log(x)x)\lim_{x \to \infty}\left(\frac{4 \log{\left(x \right)}}{\sqrt{x}}\right)
=
limx(4log(x)x)\lim_{x \to \infty}\left(\frac{4 \log{\left(x \right)}}{\sqrt{x}}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010020
Other limits x→0, -oo, +oo, 1
limx(log(x)2x)=0\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right) = 0
limx0(log(x)2x)=i\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right) = - \infty i
More at x→0 from the left
limx0+(log(x)2x)=\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right) = \infty
More at x→0 from the right
limx1(log(x)2x)=0\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right) = 0
More at x→1 from the left
limx1+(log(x)2x)=0\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right) = 0
More at x→1 from the right
limx(log(x)2x)=0\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)}^{2}}{\sqrt{x}}\right) = 0
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function log(x)^2/sqrt(x)