Mister Exam

Other calculators:


log(x)/(-1+x^2)

Limit of the function log(x)/(-1+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / log(x)\
 lim |-------|
x->1+|      2|
     \-1 + x /
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right)$$
Limit(log(x)/(-1 + x^2), x, 1)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+} \log{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+}\left(x^{2} - 1\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \log{\left(x \right)}}{\frac{d}{d x} \left(x^{2} - 1\right)}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{1}{2 x^{2}}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{1}{2 x}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{1}{2 x}\right)$$
=
$$\frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     / log(x)\
 lim |-------|
x->1+|      2|
     \-1 + x /
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
     / log(x)\
 lim |-------|
x->1-|      2|
     \-1 + x /
$$\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
= 0.5
Rapid solution [src]
1/2
$$\frac{1}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right) = \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)}}{x^{2} - 1}\right) = 0$$
More at x→-oo
Numerical answer [src]
0.5
0.5
The graph
Limit of the function log(x)/(-1+x^2)