Mister Exam

Limit of the function log(tan(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim log(tan(x))
x->oo           
limxlog(tan(x))\lim_{x \to \infty} \log{\left(\tan{\left(x \right)} \right)}
Limit(log(tan(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-1010
Other limits x→0, -oo, +oo, 1
limxlog(tan(x))\lim_{x \to \infty} \log{\left(\tan{\left(x \right)} \right)}
limx0log(tan(x))=\lim_{x \to 0^-} \log{\left(\tan{\left(x \right)} \right)} = -\infty
More at x→0 from the left
limx0+log(tan(x))=\lim_{x \to 0^+} \log{\left(\tan{\left(x \right)} \right)} = -\infty
More at x→0 from the right
limx1log(tan(x))=log(tan(1))\lim_{x \to 1^-} \log{\left(\tan{\left(x \right)} \right)} = \log{\left(\tan{\left(1 \right)} \right)}
More at x→1 from the left
limx1+log(tan(x))=log(tan(1))\lim_{x \to 1^+} \log{\left(\tan{\left(x \right)} \right)} = \log{\left(\tan{\left(1 \right)} \right)}
More at x→1 from the right
limxlog(tan(x))\lim_{x \to -\infty} \log{\left(\tan{\left(x \right)} \right)}
More at x→-oo
Rapid solution [src]
 lim log(tan(x))
x->oo           
limxlog(tan(x))\lim_{x \to \infty} \log{\left(\tan{\left(x \right)} \right)}
The graph
Limit of the function log(tan(x))