Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-sin(x)+tan(x))/(-sin(x)+4*x)
Limit of (3+n)/(1+n)
Limit of (-1+2*e^(-1+x))^(x/(-1+x))
Limit of 1+cos(pi*x)/tan(pi*x)^2
Derivative of
:
log(tan(x))
Identical expressions
log(tan(x))
logarithm of ( tangent of (x))
logtanx
Similar expressions
log(tan(x/2))/(pi-2*x)
x/sin(x)+log(tan(x/2))
log(tan(x)/x)/x^2
Limit of the function
/
log(tan(x))
Limit of the function log(tan(x))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim log(tan(x)) x->oo
lim
x
→
∞
log
(
tan
(
x
)
)
\lim_{x \to \infty} \log{\left(\tan{\left(x \right)} \right)}
x
→
∞
lim
lo
g
(
tan
(
x
)
)
Limit(log(tan(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-10
10
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
log
(
tan
(
x
)
)
\lim_{x \to \infty} \log{\left(\tan{\left(x \right)} \right)}
x
→
∞
lim
lo
g
(
tan
(
x
)
)
lim
x
→
0
−
log
(
tan
(
x
)
)
=
−
∞
\lim_{x \to 0^-} \log{\left(\tan{\left(x \right)} \right)} = -\infty
x
→
0
−
lim
lo
g
(
tan
(
x
)
)
=
−
∞
More at x→0 from the left
lim
x
→
0
+
log
(
tan
(
x
)
)
=
−
∞
\lim_{x \to 0^+} \log{\left(\tan{\left(x \right)} \right)} = -\infty
x
→
0
+
lim
lo
g
(
tan
(
x
)
)
=
−
∞
More at x→0 from the right
lim
x
→
1
−
log
(
tan
(
x
)
)
=
log
(
tan
(
1
)
)
\lim_{x \to 1^-} \log{\left(\tan{\left(x \right)} \right)} = \log{\left(\tan{\left(1 \right)} \right)}
x
→
1
−
lim
lo
g
(
tan
(
x
)
)
=
lo
g
(
tan
(
1
)
)
More at x→1 from the left
lim
x
→
1
+
log
(
tan
(
x
)
)
=
log
(
tan
(
1
)
)
\lim_{x \to 1^+} \log{\left(\tan{\left(x \right)} \right)} = \log{\left(\tan{\left(1 \right)} \right)}
x
→
1
+
lim
lo
g
(
tan
(
x
)
)
=
lo
g
(
tan
(
1
)
)
More at x→1 from the right
lim
x
→
−
∞
log
(
tan
(
x
)
)
\lim_{x \to -\infty} \log{\left(\tan{\left(x \right)} \right)}
x
→
−
∞
lim
lo
g
(
tan
(
x
)
)
More at x→-oo
Rapid solution
[src]
lim log(tan(x)) x->oo
lim
x
→
∞
log
(
tan
(
x
)
)
\lim_{x \to \infty} \log{\left(\tan{\left(x \right)} \right)}
x
→
∞
lim
lo
g
(
tan
(
x
)
)
Expand and simplify
The graph