Mister Exam

Other calculators:


log(sin(x))*sin(x)

Limit of the function log(sin(x))*sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (log(sin(x))*sin(x))
x->0+                    
$$\lim_{x \to 0^+}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right)$$
Limit(log(sin(x))*sin(x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(x \right)}}{\frac{d}{d x} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \log{\left(\sin{\left(x \right)} \right)}^{2} \sin{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(- \log{\left(\sin{\left(x \right)} \right)}^{2} \sin{\left(x \right)} \cos{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- \sin{\left(x \right)} \cos{\left(x \right)}\right)}{\frac{d}{d x} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}^{2}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \log{\left(\sin{\left(x \right)} \right)}^{3} \sin{\left(x \right)}}{2 \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \log{\left(\sin{\left(x \right)} \right)}^{3} \sin{\left(x \right)}}{2}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \sin{\left(x \right)}}{2}\right)}{\frac{d}{d x} \frac{1}{\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \cos{\left(x \right)}}{2} - \frac{3 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos{\left(x \right)}}{2}\right) \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)^{2}}{4 \sin{\left(x \right)} \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \cos{\left(x \right)}}{2} - \frac{3 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos{\left(x \right)}}{2}}{4 \sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \cos{\left(x \right)}}{2} - \frac{3 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos{\left(x \right)}}{2}}{4 \sin{\left(x \right)}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (log(sin(x))*sin(x))
x->0+                    
$$\lim_{x \to 0^+}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right)$$
0
$$0$$
= -0.00185919843575947
 lim (log(sin(x))*sin(x))
x->0-                    
$$\lim_{x \to 0^-}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right)$$
0
$$0$$
= (0.00188743473963812 - 0.000778278383302427j)
= (0.00188743473963812 - 0.000778278383302427j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle \log{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→oo
$$\lim_{x \to 1^-}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right) = \log{\left(\sin{\left(1 \right)} \right)} \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right) = \log{\left(\sin{\left(1 \right)} \right)} \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle \log{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→-oo
Numerical answer [src]
-0.00185919843575947
-0.00185919843575947
The graph
Limit of the function log(sin(x))*sin(x)