We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(x \right)}}{\frac{d}{d x} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \log{\left(\sin{\left(x \right)} \right)}^{2} \sin{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(- \log{\left(\sin{\left(x \right)} \right)}^{2} \sin{\left(x \right)} \cos{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- \sin{\left(x \right)} \cos{\left(x \right)}\right)}{\frac{d}{d x} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}^{2}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \log{\left(\sin{\left(x \right)} \right)}^{3} \sin{\left(x \right)}}{2 \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \log{\left(\sin{\left(x \right)} \right)}^{3} \sin{\left(x \right)}}{2}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \sin{\left(x \right)}}{2}\right)}{\frac{d}{d x} \frac{1}{\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \cos{\left(x \right)}}{2} - \frac{3 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos{\left(x \right)}}{2}\right) \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)^{2}}{4 \sin{\left(x \right)} \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \cos{\left(x \right)}}{2} - \frac{3 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos{\left(x \right)}}{2}}{4 \sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{- \frac{\log{\left(\sin{\left(x \right)} \right)}^{3} \cos{\left(x \right)}}{2} - \frac{3 \log{\left(\sin{\left(x \right)} \right)}^{2} \cos{\left(x \right)}}{2}}{4 \sin{\left(x \right)}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)