Mister Exam

Other calculators:


log(sin(x))/log(x)

Limit of the function log(sin(x))/log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /log(sin(x))\
 lim |-----------|
x->0+\   log(x)  /
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right)$$
Limit(log(sin(x))/log(x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \frac{1}{\log{\left(x \right)}} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{\log{\left(x \right)}}}{\frac{d}{d x} \frac{1}{\log{\left(\sin{\left(x \right)} \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}^{2} \sin{\left(x \right)}}{x \log{\left(x \right)}^{2} \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}^{2} \sin{\left(x \right)}}{x \log{\left(x \right)}^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}^{2} \sin{\left(x \right)}}{x \log{\left(x \right)}^{2}}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /log(sin(x))\
 lim |-----------|
x->0+\   log(x)  /
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right)$$
1
$$1$$
= 1.00000000290572
     /log(sin(x))\
 lim |-----------|
x->0-\   log(x)  /
$$\lim_{x \to 0^-}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right)$$
1
$$1$$
= (1.00000000245513 + 1.02257373335904e-9j)
= (1.00000000245513 + 1.02257373335904e-9j)
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right) = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right) = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→-oo
Numerical answer [src]
1.00000000290572
1.00000000290572
The graph
Limit of the function log(sin(x))/log(x)