Mister Exam

Other calculators:


log(1+t^2)

Limit of the function log(1+t^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /     2\
 lim log\1 + t /
t->0+           
$$\lim_{t \to 0^+} \log{\left(t^{2} + 1 \right)}$$
Limit(log(1 + t^2), t, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
        /     2\
 lim log\1 + t /
t->0+           
$$\lim_{t \to 0^+} \log{\left(t^{2} + 1 \right)}$$
0
$$0$$
= -2.87136948736244e-33
        /     2\
 lim log\1 + t /
t->0-           
$$\lim_{t \to 0^-} \log{\left(t^{2} + 1 \right)}$$
0
$$0$$
= -2.87136948736244e-33
= -2.87136948736244e-33
Other limits t→0, -oo, +oo, 1
$$\lim_{t \to 0^-} \log{\left(t^{2} + 1 \right)} = 0$$
More at t→0 from the left
$$\lim_{t \to 0^+} \log{\left(t^{2} + 1 \right)} = 0$$
$$\lim_{t \to \infty} \log{\left(t^{2} + 1 \right)} = \infty$$
More at t→oo
$$\lim_{t \to 1^-} \log{\left(t^{2} + 1 \right)} = \log{\left(2 \right)}$$
More at t→1 from the left
$$\lim_{t \to 1^+} \log{\left(t^{2} + 1 \right)} = \log{\left(2 \right)}$$
More at t→1 from the right
$$\lim_{t \to -\infty} \log{\left(t^{2} + 1 \right)} = \infty$$
More at t→-oo
Numerical answer [src]
-2.87136948736244e-33
-2.87136948736244e-33
The graph
Limit of the function log(1+t^2)