Mister Exam

Other calculators:


log(1-x^3)/x

You entered:

log(1-x^3)/x

What you mean?

Limit of the function log(1-x^3)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   /     3\\
     |log\1 - x /|
 lim |-----------|
x->0+\     x     /
limx0+(log(x3+1)x)\lim_{x \to 0^+}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right)
Limit(log(1 - x^3)/x, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+log(x3+1)=0\lim_{x \to 0^+} \log{\left(- x^{3} + 1 \right)} = 0
and limit for the denominator is
limx0+x=0\lim_{x \to 0^+} x = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(log(x3+1)x)\lim_{x \to 0^+}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right)
=
limx0+(ddxlog(x3+1)ddxx)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \log{\left(- x^{3} + 1 \right)}}{\frac{d}{d x} x}\right)
=
limx0+(3x2x3+1)\lim_{x \to 0^+}\left(- \frac{3 x^{2}}{- x^{3} + 1}\right)
=
limx0+(3x2)\lim_{x \to 0^+}\left(- 3 x^{2}\right)
=
limx0+(3x2)\lim_{x \to 0^+}\left(- 3 x^{2}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
0
00
One‐sided limits [src]
     /   /     3\\
     |log\1 - x /|
 lim |-----------|
x->0+\     x     /
limx0+(log(x3+1)x)\lim_{x \to 0^+}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right)
0
00
= 8.98284195579066e-31
     /   /     3\\
     |log\1 - x /|
 lim |-----------|
x->0-\     x     /
limx0(log(x3+1)x)\lim_{x \to 0^-}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right)
0
00
= 8.35837439466625e-30
= 8.35837439466625e-30
Other limits x→0, -oo, +oo, 1
limx0(log(x3+1)x)=0\lim_{x \to 0^-}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right) = 0
More at x→0 from the left
limx0+(log(x3+1)x)=0\lim_{x \to 0^+}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right) = 0
limx(log(x3+1)x)=0\lim_{x \to \infty}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right) = 0
More at x→oo
limx1(log(x3+1)x)=\lim_{x \to 1^-}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right) = -\infty
More at x→1 from the left
limx1+(log(x3+1)x)=\lim_{x \to 1^+}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right) = -\infty
More at x→1 from the right
limx(log(x3+1)x)=0\lim_{x \to -\infty}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right) = 0
More at x→-oo
Numerical answer [src]
8.98284195579066e-31
8.98284195579066e-31
The graph
Limit of the function log(1-x^3)/x