We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} \log{\left(- x^{3} + 1 \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\log{\left(- x^{3} + 1 \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \log{\left(- x^{3} + 1 \right)}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{3 x^{2}}{- x^{3} + 1}\right)$$
=
$$\lim_{x \to 0^+}\left(- 3 x^{2}\right)$$
=
$$\lim_{x \to 0^+}\left(- 3 x^{2}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)