Mister Exam

Other calculators:


log(1-x^3)

Limit of the function log(1-x^3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /     3\
 lim log\1 - x /
x->0+           
$$\lim_{x \to 0^+} \log{\left(1 - x^{3} \right)}$$
Limit(log(1 - x^3), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \log{\left(1 - x^{3} \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(1 - x^{3} \right)} = 0$$
$$\lim_{x \to \infty} \log{\left(1 - x^{3} \right)} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \log{\left(1 - x^{3} \right)} = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(1 - x^{3} \right)} = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(1 - x^{3} \right)} = \infty$$
More at x→-oo
One‐sided limits [src]
        /     3\
 lim log\1 - x /
x->0+           
$$\lim_{x \to 0^+} \log{\left(1 - x^{3} \right)}$$
0
$$0$$
= 8.60695006741856e-32
        /     3\
 lim log\1 - x /
x->0-           
$$\lim_{x \to 0^-} \log{\left(1 - x^{3} \right)}$$
0
$$0$$
= 9.54149910004164e-30
= 9.54149910004164e-30
Numerical answer [src]
8.60695006741856e-32
8.60695006741856e-32
The graph
Limit of the function log(1-x^3)