Mister Exam

Limit of the function log(-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim log(-x)
x->0+       
$$\lim_{x \to 0^+} \log{\left(- x \right)}$$
Limit(log(-x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \log{\left(- x \right)} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(- x \right)} = -\infty$$
$$\lim_{x \to \infty} \log{\left(- x \right)} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \log{\left(- x \right)} = i \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(- x \right)} = i \pi$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(- x \right)} = \infty$$
More at x→-oo
One‐sided limits [src]
 lim log(-x)
x->0+       
$$\lim_{x \to 0^+} \log{\left(- x \right)}$$
-oo
$$-\infty$$
= (-8.8558500321934 + 3.14159265358979j)
 lim log(-x)
x->0-       
$$\lim_{x \to 0^-} \log{\left(- x \right)}$$
-oo
$$-\infty$$
= -8.8558500321934
= -8.8558500321934
Numerical answer [src]
(-8.8558500321934 + 3.14159265358979j)
(-8.8558500321934 + 3.14159265358979j)
The graph
Limit of the function log(-x)