Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^2/(3+x^3-4*x)
Limit of (-10+x^2+3*x)/(16+x^2-10*x)
Limit of -7+x^2-4*x-2*x^3
Limit of ((1+x)/(2+x))^(1+x)
Identical expressions
log(log(x))/sqrt(x)
logarithm of ( logarithm of (x)) divide by square root of (x)
log(log(x))/√(x)
loglogx/sqrtx
log(log(x)) divide by sqrt(x)
Limit of the function
/
log(log(x))/sqrt(x)
Limit of the function log(log(x))/sqrt(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/log(log(x))\ lim |-----------| x->oo| ___ | \ \/ x /
lim
x
→
∞
(
log
(
log
(
x
)
)
x
)
\lim_{x \to \infty}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\right)
x
→
∞
lim
(
x
lo
g
(
lo
g
(
x
)
)
)
Limit(log(log(x))/sqrt(x), x, oo, dir='-')
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
2.5
-2.5
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
log
(
log
(
x
)
)
x
)
=
0
\lim_{x \to \infty}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\right) = 0
x
→
∞
lim
(
x
lo
g
(
lo
g
(
x
)
)
)
=
0
lim
x
→
0
−
(
log
(
log
(
x
)
)
x
)
=
∞
i
\lim_{x \to 0^-}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\right) = \infty i
x
→
0
−
lim
(
x
lo
g
(
lo
g
(
x
)
)
)
=
∞
i
More at x→0 from the left
lim
x
→
0
+
(
log
(
log
(
x
)
)
x
)
=
∞
\lim_{x \to 0^+}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\right) = \infty
x
→
0
+
lim
(
x
lo
g
(
lo
g
(
x
)
)
)
=
∞
More at x→0 from the right
lim
x
→
1
−
(
log
(
log
(
x
)
)
x
)
=
−
∞
\lim_{x \to 1^-}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\right) = -\infty
x
→
1
−
lim
(
x
lo
g
(
lo
g
(
x
)
)
)
=
−
∞
More at x→1 from the left
lim
x
→
1
+
(
log
(
log
(
x
)
)
x
)
=
−
∞
\lim_{x \to 1^+}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\right) = -\infty
x
→
1
+
lim
(
x
lo
g
(
lo
g
(
x
)
)
)
=
−
∞
More at x→1 from the right
lim
x
→
−
∞
(
log
(
log
(
x
)
)
x
)
=
0
\lim_{x \to -\infty}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\right) = 0
x
→
−
∞
lim
(
x
lo
g
(
lo
g
(
x
)
)
)
=
0
More at x→-oo
The graph