$$\lim_{x \to \infty} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
$$\lim_{x \to 0^-} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
More at x→0 from the right$$\lim_{x \to 1^-} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = \log{\left(5 \right)}^{\frac{1}{\log{\left(2 \right)}}}$$
More at x→1 from the left$$\lim_{x \to 1^+} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = \log{\left(5 \right)}^{\frac{1}{\log{\left(2 \right)}}}$$
More at x→1 from the right$$\lim_{x \to -\infty} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
More at x→-oo