Mister Exam

Other calculators:


log(5*x)^(1/log(2*x))

Limit of the function log(5*x)^(1/log(2*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
                  1    
               --------
               log(2*x)
 lim (log(5*x))        
x->oo                  
$$\lim_{x \to \infty} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}}$$
Limit(log(5*x)^(1/log(2*x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
$$\lim_{x \to 0^-} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = \log{\left(5 \right)}^{\frac{1}{\log{\left(2 \right)}}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = \log{\left(5 \right)}^{\frac{1}{\log{\left(2 \right)}}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(5 x \right)}^{\frac{1}{\log{\left(2 x \right)}}} = 1$$
More at x→-oo
The graph
Limit of the function log(5*x)^(1/log(2*x))