Mister Exam

Limit of the function log(cot(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim log(cot(x))
x->0+           
$$\lim_{x \to 0^+} \log{\left(\cot{\left(x \right)} \right)}$$
Limit(log(cot(x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \log{\left(\cot{\left(x \right)} \right)} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(\cot{\left(x \right)} \right)} = \infty$$
$$\lim_{x \to \infty} \log{\left(\cot{\left(x \right)} \right)}$$
More at x→oo
$$\lim_{x \to 1^-} \log{\left(\cot{\left(x \right)} \right)} = - \log{\left(\tan{\left(1 \right)} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(\cot{\left(x \right)} \right)} = - \log{\left(\tan{\left(1 \right)} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(\cot{\left(x \right)} \right)}$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
 lim log(cot(x))
x->0+           
$$\lim_{x \to 0^+} \log{\left(\cot{\left(x \right)} \right)}$$
oo
$$\infty$$
= 8.87290808919806
 lim log(cot(x))
x->0-           
$$\lim_{x \to 0^-} \log{\left(\cot{\left(x \right)} \right)}$$
oo
$$\infty$$
= (8.87290808919806 + 3.14159265358979j)
= (8.87290808919806 + 3.14159265358979j)
Numerical answer [src]
8.87290808919806
8.87290808919806
The graph
Limit of the function log(cot(x))