Mister Exam

Other calculators:


k/(1+k)

Limit of the function k/(1+k)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  k  \
 lim |-----|
k->oo\1 + k/
$$\lim_{k \to \infty}\left(\frac{k}{k + 1}\right)$$
Limit(k/(1 + k), k, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{k \to \infty}\left(\frac{k}{k + 1}\right)$$
Let's divide numerator and denominator by k:
$$\lim_{k \to \infty}\left(\frac{k}{k + 1}\right)$$ =
$$\lim_{k \to \infty} \frac{1}{1 + \frac{1}{k}}$$
Do Replacement
$$u = \frac{1}{k}$$
then
$$\lim_{k \to \infty} \frac{1}{1 + \frac{1}{k}} = \lim_{u \to 0^+} \frac{1}{u + 1}$$
=
$$1^{-1} = 1$$

The final answer:
$$\lim_{k \to \infty}\left(\frac{k}{k + 1}\right) = 1$$
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{k \to \infty} k = \infty$$
and limit for the denominator is
$$\lim_{k \to \infty}\left(k + 1\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{k \to \infty}\left(\frac{k}{k + 1}\right)$$
=
$$\lim_{k \to \infty}\left(\frac{\frac{d}{d k} k}{\frac{d}{d k} \left(k + 1\right)}\right)$$
=
$$\lim_{k \to \infty} 1$$
=
$$\lim_{k \to \infty} 1$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1
$$1$$
Other limits k→0, -oo, +oo, 1
$$\lim_{k \to \infty}\left(\frac{k}{k + 1}\right) = 1$$
$$\lim_{k \to 0^-}\left(\frac{k}{k + 1}\right) = 0$$
More at k→0 from the left
$$\lim_{k \to 0^+}\left(\frac{k}{k + 1}\right) = 0$$
More at k→0 from the right
$$\lim_{k \to 1^-}\left(\frac{k}{k + 1}\right) = \frac{1}{2}$$
More at k→1 from the left
$$\lim_{k \to 1^+}\left(\frac{k}{k + 1}\right) = \frac{1}{2}$$
More at k→1 from the right
$$\lim_{k \to -\infty}\left(\frac{k}{k + 1}\right) = 1$$
More at k→-oo
The graph
Limit of the function k/(1+k)