Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of coth(x)
Limit of log(n)/sqrt(n)
Limit of tan(x)/(x^2*cot(3*x))
Limit of z*sin(1/z)
Integral of d{x}
:
coth(x)
Derivative of
:
coth(x)
Identical expressions
coth(x)
hyperbolic co tangent of gent of (x)
cothx
Limit of the function
/
coth(x)
Limit of the function coth(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim coth(x) x->oo
lim
x
→
∞
coth
(
x
)
\lim_{x \to \infty} \coth{\left(x \right)}
x
→
∞
lim
coth
(
x
)
Limit(coth(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20
20
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
coth
(
x
)
=
1
\lim_{x \to \infty} \coth{\left(x \right)} = 1
x
→
∞
lim
coth
(
x
)
=
1
lim
x
→
0
−
coth
(
x
)
=
−
∞
\lim_{x \to 0^-} \coth{\left(x \right)} = -\infty
x
→
0
−
lim
coth
(
x
)
=
−
∞
More at x→0 from the left
lim
x
→
0
+
coth
(
x
)
=
∞
\lim_{x \to 0^+} \coth{\left(x \right)} = \infty
x
→
0
+
lim
coth
(
x
)
=
∞
More at x→0 from the right
lim
x
→
1
−
coth
(
x
)
=
coth
(
1
)
\lim_{x \to 1^-} \coth{\left(x \right)} = \coth{\left(1 \right)}
x
→
1
−
lim
coth
(
x
)
=
coth
(
1
)
More at x→1 from the left
lim
x
→
1
+
coth
(
x
)
=
coth
(
1
)
\lim_{x \to 1^+} \coth{\left(x \right)} = \coth{\left(1 \right)}
x
→
1
+
lim
coth
(
x
)
=
coth
(
1
)
More at x→1 from the right
lim
x
→
−
∞
coth
(
x
)
=
−
1
\lim_{x \to -\infty} \coth{\left(x \right)} = -1
x
→
−
∞
lim
coth
(
x
)
=
−
1
More at x→-oo
Rapid solution
[src]
1
1
1
1
Expand and simplify
The graph