Mister Exam

Other calculators:


4+x

Limit of the function 4+x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (4 + x)
x->5+       
limx5+(x+4)\lim_{x \to 5^+}\left(x + 4\right)
Limit(4 + x, x, 5)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Other limits x→0, -oo, +oo, 1
limx5(x+4)=9\lim_{x \to 5^-}\left(x + 4\right) = 9
More at x→5 from the left
limx5+(x+4)=9\lim_{x \to 5^+}\left(x + 4\right) = 9
limx(x+4)=\lim_{x \to \infty}\left(x + 4\right) = \infty
More at x→oo
limx0(x+4)=4\lim_{x \to 0^-}\left(x + 4\right) = 4
More at x→0 from the left
limx0+(x+4)=4\lim_{x \to 0^+}\left(x + 4\right) = 4
More at x→0 from the right
limx1(x+4)=5\lim_{x \to 1^-}\left(x + 4\right) = 5
More at x→1 from the left
limx1+(x+4)=5\lim_{x \to 1^+}\left(x + 4\right) = 5
More at x→1 from the right
limx(x+4)=\lim_{x \to -\infty}\left(x + 4\right) = -\infty
More at x→-oo
One‐sided limits [src]
 lim (4 + x)
x->5+       
limx5+(x+4)\lim_{x \to 5^+}\left(x + 4\right)
9
99
= 9.0
 lim (4 + x)
x->5-       
limx5(x+4)\lim_{x \to 5^-}\left(x + 4\right)
9
99
= 9.0
= 9.0
Rapid solution [src]
9
99
Numerical answer [src]
9.0
9.0
The graph
Limit of the function 4+x