Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((1+x)^4-(-1+x)^4)/((1+x)^3+(-1+x)^3)
Limit of (-sin(x)+tan(x))/(-sin(x)+4*x)
Limit of (4+5*x+6*x^2)/(-2+3*x^2+7*x)
Limit of (-9+4*x^2+5*x)/(7-9*x^2-2*x)
Graphing y =
:
4*x^5
Derivative of
:
4*x^5
Identical expressions
four *x^ five
4 multiply by x to the power of 5
four multiply by x to the power of five
4*x5
4*x⁵
4x^5
4x5
Similar expressions
(3-x^3+2*x^5)/(x^2+4*x^5)
Limit of the function
/
4*x^5
Limit of the function 4*x^5
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 5\ lim \4*x / x->2+
lim
x
→
2
+
(
4
x
5
)
\lim_{x \to 2^+}\left(4 x^{5}\right)
x
→
2
+
lim
(
4
x
5
)
Limit(4*x^5, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0
-3.0
-2.0
-1.0
4.0
0.0
1.0
2.0
3.0
-10000
10000
Plot the graph
Rapid solution
[src]
128
128
128
128
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
2
−
(
4
x
5
)
=
128
\lim_{x \to 2^-}\left(4 x^{5}\right) = 128
x
→
2
−
lim
(
4
x
5
)
=
128
More at x→2 from the left
lim
x
→
2
+
(
4
x
5
)
=
128
\lim_{x \to 2^+}\left(4 x^{5}\right) = 128
x
→
2
+
lim
(
4
x
5
)
=
128
lim
x
→
∞
(
4
x
5
)
=
∞
\lim_{x \to \infty}\left(4 x^{5}\right) = \infty
x
→
∞
lim
(
4
x
5
)
=
∞
More at x→oo
lim
x
→
0
−
(
4
x
5
)
=
0
\lim_{x \to 0^-}\left(4 x^{5}\right) = 0
x
→
0
−
lim
(
4
x
5
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
4
x
5
)
=
0
\lim_{x \to 0^+}\left(4 x^{5}\right) = 0
x
→
0
+
lim
(
4
x
5
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
4
x
5
)
=
4
\lim_{x \to 1^-}\left(4 x^{5}\right) = 4
x
→
1
−
lim
(
4
x
5
)
=
4
More at x→1 from the left
lim
x
→
1
+
(
4
x
5
)
=
4
\lim_{x \to 1^+}\left(4 x^{5}\right) = 4
x
→
1
+
lim
(
4
x
5
)
=
4
More at x→1 from the right
lim
x
→
−
∞
(
4
x
5
)
=
−
∞
\lim_{x \to -\infty}\left(4 x^{5}\right) = -\infty
x
→
−
∞
lim
(
4
x
5
)
=
−
∞
More at x→-oo
One‐sided limits
[src]
/ 5\ lim \4*x / x->2+
lim
x
→
2
+
(
4
x
5
)
\lim_{x \to 2^+}\left(4 x^{5}\right)
x
→
2
+
lim
(
4
x
5
)
128
128
128
128
= 128.0
/ 5\ lim \4*x / x->2-
lim
x
→
2
−
(
4
x
5
)
\lim_{x \to 2^-}\left(4 x^{5}\right)
x
→
2
−
lim
(
4
x
5
)
128
128
128
128
= 128.0
= 128.0
Numerical answer
[src]
128.0
128.0
The graph