Mister Exam

Limit of the function 4*sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (4*sin(x))
x->0+          
$$\lim_{x \to 0^+}\left(4 \sin{\left(x \right)}\right)$$
Limit(4*sin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(4 \sin{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(4 \sin{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(4 \sin{\left(x \right)}\right) = \left\langle -4, 4\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(4 \sin{\left(x \right)}\right) = 4 \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(4 \sin{\left(x \right)}\right) = 4 \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(4 \sin{\left(x \right)}\right) = \left\langle -4, 4\right\rangle$$
More at x→-oo
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (4*sin(x))
x->0+          
$$\lim_{x \to 0^+}\left(4 \sin{\left(x \right)}\right)$$
0
$$0$$
= -1.78268808351427e-31
 lim (4*sin(x))
x->0-          
$$\lim_{x \to 0^-}\left(4 \sin{\left(x \right)}\right)$$
0
$$0$$
= 1.78268808351427e-31
= 1.78268808351427e-31
Numerical answer [src]
-1.78268808351427e-31
-1.78268808351427e-31
The graph
Limit of the function 4*sin(x)