$$\lim_{x \to 0^-}\left(4 \sin{\left(4 x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(4 \sin{\left(4 x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(4 \sin{\left(4 x \right)}\right) = \left\langle -4, 4\right\rangle$$
More at x→oo$$\lim_{x \to 1^-}\left(4 \sin{\left(4 x \right)}\right) = 4 \sin{\left(4 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(4 \sin{\left(4 x \right)}\right) = 4 \sin{\left(4 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(4 \sin{\left(4 x \right)}\right) = \left\langle -4, 4\right\rangle$$
More at x→-oo