Mister Exam

Other calculators:


4/(1+x^2)

Limit of the function 4/(1+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  4   \
 lim |------|
x->oo|     2|
     \1 + x /
$$\lim_{x \to \infty}\left(\frac{4}{x^{2} + 1}\right)$$
Limit(4/(1 + x^2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{4}{x^{2} + 1}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{4}{x^{2} + 1}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{4 \frac{1}{x^{2}}}{1 + \frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{4 \frac{1}{x^{2}}}{1 + \frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{4 u^{2}}{u^{2} + 1}\right)$$
=
$$\frac{4 \cdot 0^{2}}{0^{2} + 1} = 0$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{4}{x^{2} + 1}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{4}{x^{2} + 1}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{4}{x^{2} + 1}\right) = 4$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{4}{x^{2} + 1}\right) = 4$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{4}{x^{2} + 1}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{4}{x^{2} + 1}\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{4}{x^{2} + 1}\right) = 0$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function 4/(1+x^2)