$$\lim_{x \to \infty}\left(\frac{4}{x^{2} + 1}\right) = 0$$ $$\lim_{x \to 0^-}\left(\frac{4}{x^{2} + 1}\right) = 4$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{4}{x^{2} + 1}\right) = 4$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{4}{x^{2} + 1}\right) = 2$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{4}{x^{2} + 1}\right) = 2$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{4}{x^{2} + 1}\right) = 0$$ More at x→-oo