$$\lim_{x \to -2^-}\left(3 x^{2} + \left(2 x + 5\right)\right) = 13$$ More at x→-2 from the left $$\lim_{x \to -2^+}\left(3 x^{2} + \left(2 x + 5\right)\right) = 13$$ $$\lim_{x \to \infty}\left(3 x^{2} + \left(2 x + 5\right)\right) = \infty$$ More at x→oo $$\lim_{x \to 0^-}\left(3 x^{2} + \left(2 x + 5\right)\right) = 5$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(3 x^{2} + \left(2 x + 5\right)\right) = 5$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(3 x^{2} + \left(2 x + 5\right)\right) = 10$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(3 x^{2} + \left(2 x + 5\right)\right) = 10$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(3 x^{2} + \left(2 x + 5\right)\right) = \infty$$ More at x→-oo