Mister Exam

Other calculators:


5+2*x+3*x^2

Limit of the function 5+2*x+3*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /             2\
 lim  \5 + 2*x + 3*x /
x->-2+                
$$\lim_{x \to -2^+}\left(3 x^{2} + \left(2 x + 5\right)\right)$$
Limit(5 + 2*x + 3*x^2, x, -2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      /             2\
 lim  \5 + 2*x + 3*x /
x->-2+                
$$\lim_{x \to -2^+}\left(3 x^{2} + \left(2 x + 5\right)\right)$$
13
$$13$$
= 13.0
      /             2\
 lim  \5 + 2*x + 3*x /
x->-2-                
$$\lim_{x \to -2^-}\left(3 x^{2} + \left(2 x + 5\right)\right)$$
13
$$13$$
= 13.0
= 13.0
Rapid solution [src]
13
$$13$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -2^-}\left(3 x^{2} + \left(2 x + 5\right)\right) = 13$$
More at x→-2 from the left
$$\lim_{x \to -2^+}\left(3 x^{2} + \left(2 x + 5\right)\right) = 13$$
$$\lim_{x \to \infty}\left(3 x^{2} + \left(2 x + 5\right)\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(3 x^{2} + \left(2 x + 5\right)\right) = 5$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 x^{2} + \left(2 x + 5\right)\right) = 5$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 x^{2} + \left(2 x + 5\right)\right) = 10$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 x^{2} + \left(2 x + 5\right)\right) = 10$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 x^{2} + \left(2 x + 5\right)\right) = \infty$$
More at x→-oo
Numerical answer [src]
13.0
13.0
The graph
Limit of the function 5+2*x+3*x^2