Mister Exam

Other calculators:


5*x/atan(7*x)

Limit of the function 5*x/atan(7*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   5*x   \
 lim |---------|
x->0+\atan(7*x)/
$$\lim_{x \to 0^+}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right)$$
Limit((5*x)/atan(7*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(5 x\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \operatorname{atan}{\left(7 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} 5 x}{\frac{d}{d x} \operatorname{atan}{\left(7 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(35 x^{2} + \frac{5}{7}\right)$$
=
$$\lim_{x \to 0^+} \frac{5}{7}$$
=
$$\lim_{x \to 0^+} \frac{5}{7}$$
=
$$\frac{5}{7}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /   5*x   \
 lim |---------|
x->0+\atan(7*x)/
$$\lim_{x \to 0^+}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right)$$
5/7
$$\frac{5}{7}$$
= 0.714285714285714
     /   5*x   \
 lim |---------|
x->0-\atan(7*x)/
$$\lim_{x \to 0^-}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right)$$
5/7
$$\frac{5}{7}$$
= 0.714285714285714
= 0.714285714285714
Rapid solution [src]
5/7
$$\frac{5}{7}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right) = \frac{5}{7}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right) = \frac{5}{7}$$
$$\lim_{x \to \infty}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right) = \frac{5}{\operatorname{atan}{\left(7 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right) = \frac{5}{\operatorname{atan}{\left(7 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{5 x}{\operatorname{atan}{\left(7 x \right)}}\right) = \infty$$
More at x→-oo
Numerical answer [src]
0.714285714285714
0.714285714285714
The graph
Limit of the function 5*x/atan(7*x)