Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 2+((-1+x)/(3+x))^x
Limit of (-1+x)/(x+x^2)
Limit of ((1+x)^4-(-1+x)^4)/((1+x)^4+(-1+x)^4)
Limit of tan(6*x)/(3*x)
Derivative of
:
5/x^4
Integral of d{x}
:
5/x^4
Identical expressions
five /x^ four
5 divide by x to the power of 4
five divide by x to the power of four
5/x4
5/x⁴
5 divide by x^4
Limit of the function
/
5/x^4
Limit of the function 5/x^4
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/5 \ lim |--| x->oo| 4| \x /
$$\lim_{x \to \infty}\left(\frac{5}{x^{4}}\right)$$
Limit(5/x^4, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{5}{x^{4}}\right)$$
Let's divide numerator and denominator by x^4:
$$\lim_{x \to \infty}\left(\frac{5}{x^{4}}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{5 \frac{1}{x^{4}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{5 \frac{1}{x^{4}}}{1}\right) = \lim_{u \to 0^+}\left(5 u^{4}\right)$$
=
$$5 \cdot 0^{4} = 0$$
The final answer:
$$\lim_{x \to \infty}\left(\frac{5}{x^{4}}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{5}{x^{4}}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{5}{x^{4}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{5}{x^{4}}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{5}{x^{4}}\right) = 5$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{5}{x^{4}}\right) = 5$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{5}{x^{4}}\right) = 0$$
More at x→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph