$$\lim_{n \to \infty} \left(\frac{5}{6}\right)^{n} = 0$$ $$\lim_{n \to 0^-} \left(\frac{5}{6}\right)^{n} = 1$$ More at n→0 from the left $$\lim_{n \to 0^+} \left(\frac{5}{6}\right)^{n} = 1$$ More at n→0 from the right $$\lim_{n \to 1^-} \left(\frac{5}{6}\right)^{n} = \frac{5}{6}$$ More at n→1 from the left $$\lim_{n \to 1^+} \left(\frac{5}{6}\right)^{n} = \frac{5}{6}$$ More at n→1 from the right $$\lim_{n \to -\infty} \left(\frac{5}{6}\right)^{n} = \infty$$ More at n→-oo