We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{x \to \infty} x! = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(3^{x} + x^{3}\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{x!}{3^{x} + x^{3}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x!}{\frac{d}{d x} \left(3^{x} + x^{3}\right)}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}{\left(0,x + 1 \right)}}{3^{x} \log{\left(3 \right)} + 3 x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \Gamma\left(x + 1\right) \operatorname{polygamma}{\left(0,x + 1 \right)}}{\frac{d}{d x} \left(3^{x} \log{\left(3 \right)} + 3 x^{2}\right)}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}^{2}{\left(0,x + 1 \right)} + \Gamma\left(x + 1\right) \operatorname{polygamma}{\left(1,x + 1 \right)}}{3^{x} \log{\left(3 \right)}^{2} + 6 x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}^{2}{\left(0,x + 1 \right)} + \Gamma\left(x + 1\right) \operatorname{polygamma}{\left(1,x + 1 \right)}}{3^{x} \log{\left(3 \right)}^{2} + 6 x}\right)$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)