Mister Exam

Other calculators:


factorial(x)/(1+2^x)

Limit of the function factorial(x)/(1+2^x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x!  \
 lim |------|
x->oo|     x|
     \1 + 2 /
$$\lim_{x \to \infty}\left(\frac{x!}{2^{x} + 1}\right)$$
Limit(factorial(x)/(1 + 2^x), x, oo, dir='-')
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x!}{2^{x} + 1}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x!}{2^{x} + 1}\right) = \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x!}{2^{x} + 1}\right) = \frac{1}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x!}{2^{x} + 1}\right) = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x!}{2^{x} + 1}\right) = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x!}{2^{x} + 1}\right) = \left(-\infty\right)!$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function factorial(x)/(1+2^x)