$$\lim_{n \to \infty}\left(\frac{n!}{\cos{\left(n \right)}}\right)$$
$$\lim_{n \to 0^-}\left(\frac{n!}{\cos{\left(n \right)}}\right) = 1$$
More at n→0 from the left$$\lim_{n \to 0^+}\left(\frac{n!}{\cos{\left(n \right)}}\right) = 1$$
More at n→0 from the right$$\lim_{n \to 1^-}\left(\frac{n!}{\cos{\left(n \right)}}\right) = \frac{1}{\cos{\left(1 \right)}}$$
More at n→1 from the left$$\lim_{n \to 1^+}\left(\frac{n!}{\cos{\left(n \right)}}\right) = \frac{1}{\cos{\left(1 \right)}}$$
More at n→1 from the right$$\lim_{n \to -\infty}\left(\frac{n!}{\cos{\left(n \right)}}\right)$$
More at n→-oo