Mister Exam

Other calculators:


factorial(n)/cos(n)

Limit of the function factorial(n)/cos(n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  n!  \
 lim |------|
n->oo\cos(n)/
$$\lim_{n \to \infty}\left(\frac{n!}{\cos{\left(n \right)}}\right)$$
Limit(factorial(n)/cos(n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{n!}{\cos{\left(n \right)}}\right)$$
$$\lim_{n \to 0^-}\left(\frac{n!}{\cos{\left(n \right)}}\right) = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{n!}{\cos{\left(n \right)}}\right) = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{n!}{\cos{\left(n \right)}}\right) = \frac{1}{\cos{\left(1 \right)}}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{n!}{\cos{\left(n \right)}}\right) = \frac{1}{\cos{\left(1 \right)}}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{n!}{\cos{\left(n \right)}}\right)$$
More at n→-oo
Rapid solution [src]
     /  n!  \
 lim |------|
n->oo\cos(n)/
$$\lim_{n \to \infty}\left(\frac{n!}{\cos{\left(n \right)}}\right)$$
The graph
Limit of the function factorial(n)/cos(n)