$$\lim_{x \to \infty} e^{\sin{\left(x \right)}} = \left\langle e^{-1}, e\right\rangle$$ $$\lim_{x \to 0^-} e^{\sin{\left(x \right)}} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} e^{\sin{\left(x \right)}} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} e^{\sin{\left(x \right)}} = e^{\sin{\left(1 \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+} e^{\sin{\left(x \right)}} = e^{\sin{\left(1 \right)}}$$ More at x→1 from the right $$\lim_{x \to -\infty} e^{\sin{\left(x \right)}} = \left\langle e^{-1}, e\right\rangle$$ More at x→-oo