Mister Exam

Limit of the function exp(sin(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      sin(x)
 lim e      
x->oo       
$$\lim_{x \to \infty} e^{\sin{\left(x \right)}}$$
Limit(exp(sin(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
  -1    
$$\left\langle e^{-1}, e\right\rangle$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} e^{\sin{\left(x \right)}} = \left\langle e^{-1}, e\right\rangle$$
$$\lim_{x \to 0^-} e^{\sin{\left(x \right)}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{\sin{\left(x \right)}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} e^{\sin{\left(x \right)}} = e^{\sin{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{\sin{\left(x \right)}} = e^{\sin{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{\sin{\left(x \right)}} = \left\langle e^{-1}, e\right\rangle$$
More at x→-oo
The graph
Limit of the function exp(sin(x))