Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((1+2*x)/(-1+x))^x
Limit of exp(n)
Limit of (-sin(x)+tan(x))/(x*(1-cos(2*x)))
Limit of 4*x/sin(2*x)
Sum of series
:
exp(n)
Identical expressions
exp(n)
exponent of (n)
expn
Similar expressions
exp(n^2)/factorial(2*n)
exp(n*re(x))*exp((-1-n)*re(x))
Limit of the function
/
exp(n)
Limit of the function exp(n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
n lim e n->oo
$$\lim_{n \to \infty} e^{n}$$
Limit(exp(n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} e^{n} = \infty$$
$$\lim_{n \to 0^-} e^{n} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} e^{n} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} e^{n} = e$$
More at n→1 from the left
$$\lim_{n \to 1^+} e^{n} = e$$
More at n→1 from the right
$$\lim_{n \to -\infty} e^{n} = 0$$
More at n→-oo
The graph