Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1-4*x)^(1/x)
Limit of (-16+x^2+6*x)/(-2-5*x+3*x^2)
Limit of (1+x)^(2/3)-(-1+x)^(2/3)
Limit of 1/3+x/3
Graphing y =
:
exp(-sqrt(x))
Integral of d{x}
:
exp(-sqrt(x))
Identical expressions
exp(-sqrt(x))
exponent of ( minus square root of (x))
exp(-√(x))
exp-sqrtx
Similar expressions
exp(sqrt(x))
Limit of the function
/
exp(-sqrt(x))
Limit of the function exp(-sqrt(x))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
___ -\/ x lim e x->oo
$$\lim_{x \to \infty} e^{- \sqrt{x}}$$
Limit(exp(-sqrt(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} e^{- \sqrt{x}} = 0$$
$$\lim_{x \to 0^-} e^{- \sqrt{x}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{- \sqrt{x}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} e^{- \sqrt{x}} = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{- \sqrt{x}} = e^{-1}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{- \sqrt{x}}$$
More at x→-oo
The graph