Mister Exam

Other calculators:


exp(-1/x^2)

You entered:

exp(-1/x^2)

What you mean?

Limit of the function exp(-1/x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -1 
      ---
        2
       x 
 lim e   
x->0+    
$$\lim_{x \to 0^+} e^{- \frac{1}{x^{2}}}$$
Limit(exp(-1/(x^2)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
      -1 
      ---
        2
       x 
 lim e   
x->0+    
$$\lim_{x \to 0^+} e^{- \frac{1}{x^{2}}}$$
0
$$0$$
= 2.82077008846014e-53
      -1 
      ---
        2
       x 
 lim e   
x->0-    
$$\lim_{x \to 0^-} e^{- \frac{1}{x^{2}}}$$
0
$$0$$
= 2.82077008846014e-53
= 2.82077008846014e-53
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} e^{- \frac{1}{x^{2}}} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{- \frac{1}{x^{2}}} = 0$$
$$\lim_{x \to \infty} e^{- \frac{1}{x^{2}}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} e^{- \frac{1}{x^{2}}} = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{- \frac{1}{x^{2}}} = e^{-1}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{- \frac{1}{x^{2}}} = 1$$
More at x→-oo
Numerical answer [src]
2.82077008846014e-53
2.82077008846014e-53
The graph
Limit of the function exp(-1/x^2)