$$\lim_{x \to \infty}\left(\frac{57 x^{2}}{10} + \left(13 x + 8\right)\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{57 x^{2}}{10} + \left(13 x + 8\right)\right) = 8$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{57 x^{2}}{10} + \left(13 x + 8\right)\right) = 8$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{57 x^{2}}{10} + \left(13 x + 8\right)\right) = \frac{267}{10}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{57 x^{2}}{10} + \left(13 x + 8\right)\right) = \frac{267}{10}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{57 x^{2}}{10} + \left(13 x + 8\right)\right) = \infty$$
More at x→-oo