Mister Exam

Other calculators:


8/(16-x^2)

Limit of the function 8/(16-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   8   \
 lim  |-------|
x->-oo|      2|
      \16 - x /
$$\lim_{x \to -\infty}\left(\frac{8}{16 - x^{2}}\right)$$
Limit(8/(16 - x^2), x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(\frac{8}{16 - x^{2}}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to -\infty}\left(\frac{8}{16 - x^{2}}\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{8 \frac{1}{x^{2}}}{-1 + \frac{16}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{8 \frac{1}{x^{2}}}{-1 + \frac{16}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{8 u^{2}}{16 u^{2} - 1}\right)$$
=
$$\frac{8 \cdot 0^{2}}{-1 + 16 \cdot 0^{2}} = 0$$

The final answer:
$$\lim_{x \to -\infty}\left(\frac{8}{16 - x^{2}}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{8}{16 - x^{2}}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{8}{16 - x^{2}}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{8}{16 - x^{2}}\right) = \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{8}{16 - x^{2}}\right) = \frac{1}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{8}{16 - x^{2}}\right) = \frac{8}{15}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{8}{16 - x^{2}}\right) = \frac{8}{15}$$
More at x→1 from the right
The graph
Limit of the function 8/(16-x^2)