Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (2^(1+2*x)+3^(2+x))/(5+4^(2+x))
Limit of 1/(x*(3+x))
Limit of 1+x*log(2+x)
Limit of ((1+x^2)^(1/3)-x*cot(x))/(x*sin(x))
Integral of d{x}
:
e^(2+x)
Identical expressions
e^(two +x)
e to the power of (2 plus x)
e to the power of (two plus x)
e(2+x)
e2+x
e^2+x
Similar expressions
e^(2-x)
Limit of the function
/
e^(2+x)
Limit of the function e^(2+x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
2 + x lim E x->oo
$$\lim_{x \to \infty} e^{x + 2}$$
Limit(E^(2 + x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} e^{x + 2} = \infty$$
$$\lim_{x \to 0^-} e^{x + 2} = e^{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{x + 2} = e^{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} e^{x + 2} = e^{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{x + 2} = e^{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{x + 2} = 0$$
More at x→-oo
The graph