Mister Exam

Other calculators:


e^(-x^2)

Limit of the function e^(-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2
      -x 
 lim E   
x->oo    
limxex2\lim_{x \to \infty} e^{- x^{2}}
Limit(E^(-x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101002
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limxex2=0\lim_{x \to \infty} e^{- x^{2}} = 0
limx0ex2=1\lim_{x \to 0^-} e^{- x^{2}} = 1
More at x→0 from the left
limx0+ex2=1\lim_{x \to 0^+} e^{- x^{2}} = 1
More at x→0 from the right
limx1ex2=e1\lim_{x \to 1^-} e^{- x^{2}} = e^{-1}
More at x→1 from the left
limx1+ex2=e1\lim_{x \to 1^+} e^{- x^{2}} = e^{-1}
More at x→1 from the right
limxex2=0\lim_{x \to -\infty} e^{- x^{2}} = 0
More at x→-oo
The graph
Limit of the function e^(-x^2)