$$\lim_{x \to \infty}\left(e^{- x} \cos{\left(x \right)}\right) = 0$$
$$\lim_{x \to 0^-}\left(e^{- x} \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(e^{- x} \cos{\left(x \right)}\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(e^{- x} \cos{\left(x \right)}\right) = \frac{\cos{\left(1 \right)}}{e}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(e^{- x} \cos{\left(x \right)}\right) = \frac{\cos{\left(1 \right)}}{e}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(e^{- x} \cos{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo