Mister Exam

Other calculators:


e^(-x)/sqrt(x)

Limit of the function e^(-x)/sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  -x \
     | e   |
 lim |-----|
x->oo|  ___|
     \\/ x /
$$\lim_{x \to \infty}\left(\frac{e^{- x}}{\sqrt{x}}\right)$$
Limit(1/(E^x*(sqrt(x))), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{e^{- x}}{\sqrt{x}}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{e^{- x}}{\sqrt{x}}\right) = - \infty i$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{- x}}{\sqrt{x}}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{e^{- x}}{\sqrt{x}}\right) = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{- x}}{\sqrt{x}}\right) = e^{-1}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{- x}}{\sqrt{x}}\right) = - \infty i$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function e^(-x)/sqrt(x)