Mister Exam

Other calculators:


e^(-x)/sqrt(x)

Limit of the function e^(-x)/sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  -x \
     | e   |
 lim |-----|
x->oo|  ___|
     \\/ x /
limx(exx)\lim_{x \to \infty}\left(\frac{e^{- x}}{\sqrt{x}}\right)
Limit(1/(E^x*(sqrt(x))), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101005
Other limits x→0, -oo, +oo, 1
limx(exx)=0\lim_{x \to \infty}\left(\frac{e^{- x}}{\sqrt{x}}\right) = 0
limx0(exx)=i\lim_{x \to 0^-}\left(\frac{e^{- x}}{\sqrt{x}}\right) = - \infty i
More at x→0 from the left
limx0+(exx)=\lim_{x \to 0^+}\left(\frac{e^{- x}}{\sqrt{x}}\right) = \infty
More at x→0 from the right
limx1(exx)=e1\lim_{x \to 1^-}\left(\frac{e^{- x}}{\sqrt{x}}\right) = e^{-1}
More at x→1 from the left
limx1+(exx)=e1\lim_{x \to 1^+}\left(\frac{e^{- x}}{\sqrt{x}}\right) = e^{-1}
More at x→1 from the right
limx(exx)=i\lim_{x \to -\infty}\left(\frac{e^{- x}}{\sqrt{x}}\right) = - \infty i
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function e^(-x)/sqrt(x)