Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-64+4^x)/(-3+x)
Limit of (3-x^2+5*x)/(4*x^7+81*x)
Limit of (-2+2*x^3+7*x)/(-4-x+3*x^3)
Limit of (1-sin(x))/cos(x)
Integral of d{x}
:
e^(-3*x)
Identical expressions
e^(- three *x)
e to the power of ( minus 3 multiply by x)
e to the power of ( minus three multiply by x)
e(-3*x)
e-3*x
e^(-3x)
e(-3x)
e-3x
e^-3x
Similar expressions
e^(3*x)
Limit of the function
/
e^(-3*x)
Limit of the function e^(-3*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
-3*x lim E x->oo
$$\lim_{x \to \infty} e^{- 3 x}$$
Limit(E^(-3*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} e^{- 3 x} = 0$$
$$\lim_{x \to 0^-} e^{- 3 x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{- 3 x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} e^{- 3 x} = e^{-3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{- 3 x} = e^{-3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{- 3 x} = \infty$$
More at x→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph