Mister Exam

Other calculators:


e^(-3*x)

Limit of the function e^(-3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -3*x
 lim E    
x->oo     
$$\lim_{x \to \infty} e^{- 3 x}$$
Limit(E^(-3*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} e^{- 3 x} = 0$$
$$\lim_{x \to 0^-} e^{- 3 x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{- 3 x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} e^{- 3 x} = e^{-3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{- 3 x} = e^{-3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{- 3 x} = \infty$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function e^(-3*x)