Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-16+x^2-6*x)/(-2+x+x^2)
Limit of -1+sqrt(5)-x-2/(sqrt(2)-x)
Limit of (e^x-x-cos(x))/(-x+log(1+x))
Limit of (-cos(x)^3+cos(x))/(4*x*sin(x))
Integral of d{x}
:
e-x
Graphing y =
:
e-x
Derivative of
:
e-x
Identical expressions
e-x
e minus x
Similar expressions
e+x
1+e^(-x)*(-1+x+x^2)
2*x*e^(-x^2)
x+e^(-x)*x^2
(-3*e^(4*x)-2*e^(-x)+5*e^(2*x))/(-4*sqrt(1+5*x)+4*cos(3*x)+5*sin(2*x))
1-e^(-x)
Limit of the function
/
e-x
Limit of the function e-x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (E - x) x->oo
$$\lim_{x \to \infty}\left(e - x\right)$$
Limit(E - x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(e - x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(e - x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{e}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{e}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{e u - 1}{u}\right)$$
=
$$\frac{-1 + 0 e}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(e - x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(e - x\right) = -\infty$$
$$\lim_{x \to 0^-}\left(e - x\right) = e$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e - x\right) = e$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(e - x\right) = -1 + e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e - x\right) = -1 + e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(e - x\right) = \infty$$
More at x→-oo
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
The graph