Mister Exam

Other calculators:


cot(x)^tan(x)

Limit of the function cot(x)^tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        tan(x)   
 lim cot      (x)
x->0+            
$$\lim_{x \to 0^+} \cot^{\tan{\left(x \right)}}{\left(x \right)}$$
Limit(cot(x)^tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
        tan(x)   
 lim cot      (x)
x->0+            
$$\lim_{x \to 0^+} \cot^{\tan{\left(x \right)}}{\left(x \right)}$$
1
$$1$$
= 1.00185542670553
        tan(x)   
 lim cot      (x)
x->0-            
$$\lim_{x \to 0^-} \cot^{\tan{\left(x \right)}}{\left(x \right)}$$
1
$$1$$
= (0.998093757181672 - 0.000768056678188133j)
= (0.998093757181672 - 0.000768056678188133j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \cot^{\tan{\left(x \right)}}{\left(x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cot^{\tan{\left(x \right)}}{\left(x \right)} = 1$$
$$\lim_{x \to \infty} \cot^{\tan{\left(x \right)}}{\left(x \right)}$$
More at x→oo
$$\lim_{x \to 1^-} \cot^{\tan{\left(x \right)}}{\left(x \right)} = \tan^{- \tan{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cot^{\tan{\left(x \right)}}{\left(x \right)} = \tan^{- \tan{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cot^{\tan{\left(x \right)}}{\left(x \right)}$$
More at x→-oo
Numerical answer [src]
1.00185542670553
1.00185542670553
The graph
Limit of the function cot(x)^tan(x)