$$\lim_{x \to \frac{\pi}{2}^-} \cot^{\cos{\left(x \right)}}{\left(x \right)} = 1$$
More at x→pi/2 from the left$$\lim_{x \to \frac{\pi}{2}^+} \cot^{\cos{\left(x \right)}}{\left(x \right)} = 1$$
$$\lim_{x \to \infty} \cot^{\cos{\left(x \right)}}{\left(x \right)}$$
More at x→oo$$\lim_{x \to 0^-} \cot^{\cos{\left(x \right)}}{\left(x \right)} = -\infty$$
More at x→0 from the left$$\lim_{x \to 0^+} \cot^{\cos{\left(x \right)}}{\left(x \right)} = \infty$$
More at x→0 from the right$$\lim_{x \to 1^-} \cot^{\cos{\left(x \right)}}{\left(x \right)} = \tan^{- \cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \cot^{\cos{\left(x \right)}}{\left(x \right)} = \tan^{- \cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \cot^{\cos{\left(x \right)}}{\left(x \right)}$$
More at x→-oo