Mister Exam

Other calculators:


cot(x)^cos(x)

Limit of the function cot(x)^cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         cos(x)   
 lim  cot      (x)
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+} \cot^{\cos{\left(x \right)}}{\left(x \right)}$$
Limit(cot(x)^cos(x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
         cos(x)   
 lim  cot      (x)
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+} \cot^{\cos{\left(x \right)}}{\left(x \right)}$$
1
$$1$$
= (1.00191868618493 - 0.000831463027735788j)
         cos(x)   
 lim  cot      (x)
   pi             
x->---            
   2              
$$\lim_{x \to \frac{\pi}{2}^-} \cot^{\cos{\left(x \right)}}{\left(x \right)}$$
1
$$1$$
= 0.9978981007012
= 0.9978981007012
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-} \cot^{\cos{\left(x \right)}}{\left(x \right)} = 1$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+} \cot^{\cos{\left(x \right)}}{\left(x \right)} = 1$$
$$\lim_{x \to \infty} \cot^{\cos{\left(x \right)}}{\left(x \right)}$$
More at x→oo
$$\lim_{x \to 0^-} \cot^{\cos{\left(x \right)}}{\left(x \right)} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cot^{\cos{\left(x \right)}}{\left(x \right)} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \cot^{\cos{\left(x \right)}}{\left(x \right)} = \tan^{- \cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cot^{\cos{\left(x \right)}}{\left(x \right)} = \tan^{- \cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cot^{\cos{\left(x \right)}}{\left(x \right)}$$
More at x→-oo
Numerical answer [src]
(1.00191868618493 - 0.000831463027735788j)
(1.00191868618493 - 0.000831463027735788j)
The graph
Limit of the function cot(x)^cos(x)