Mister Exam

Limit of the function cot(x)*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (cot(x)*tan(x))
x->oo               
limx(tan(x)cot(x))\lim_{x \to \infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
Limit(cot(x)*tan(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
Rapid solution [src]
 lim (cot(x)*tan(x))
x->oo               
limx(tan(x)cot(x))\lim_{x \to \infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
Other limits x→0, -oo, +oo, 1
limx(tan(x)cot(x))\lim_{x \to \infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
limx0(tan(x)cot(x))=1\lim_{x \to 0^-}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
More at x→0 from the left
limx0+(tan(x)cot(x))=1\lim_{x \to 0^+}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
More at x→0 from the right
limx1(tan(x)cot(x))=1\lim_{x \to 1^-}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
More at x→1 from the left
limx1+(tan(x)cot(x))=1\lim_{x \to 1^+}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
More at x→1 from the right
limx(tan(x)cot(x))\lim_{x \to -\infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
More at x→-oo
The graph
Limit of the function cot(x)*tan(x)