$$\lim_{x \to \infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)$$
$$\lim_{x \to 0^-}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)$$
More at x→-oo