Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-sin(x)+tan(x))/(-sin(x)+4*x)
Limit of (3+n)/(1+n)
Limit of (-1+2*e^(-1+x))^(x/(-1+x))
Limit of 1+cos(pi*x)/tan(pi*x)^2
Graphing y =
:
cot(x)*tan(x)
Identical expressions
cot(x)*tan(x)
cotangent of (x) multiply by tangent of (x)
cot(x)tan(x)
cotxtanx
Similar expressions
log(cot(x)^tan(x))
cot(x)^tan(x)
(1+cot(x))^tan(x)
log(log(cot(x)))*tan(x)
log(cot(x))*tan(x)
Limit of the function
/
cot(x)*tan(x)
Limit of the function cot(x)*tan(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (cot(x)*tan(x)) x->oo
lim
x
→
∞
(
tan
(
x
)
cot
(
x
)
)
\lim_{x \to \infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
x
→
∞
lim
(
tan
(
x
)
cot
(
x
)
)
Limit(cot(x)*tan(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Rapid solution
[src]
lim (cot(x)*tan(x)) x->oo
lim
x
→
∞
(
tan
(
x
)
cot
(
x
)
)
\lim_{x \to \infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
x
→
∞
lim
(
tan
(
x
)
cot
(
x
)
)
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
tan
(
x
)
cot
(
x
)
)
\lim_{x \to \infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
x
→
∞
lim
(
tan
(
x
)
cot
(
x
)
)
lim
x
→
0
−
(
tan
(
x
)
cot
(
x
)
)
=
1
\lim_{x \to 0^-}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
x
→
0
−
lim
(
tan
(
x
)
cot
(
x
)
)
=
1
More at x→0 from the left
lim
x
→
0
+
(
tan
(
x
)
cot
(
x
)
)
=
1
\lim_{x \to 0^+}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
x
→
0
+
lim
(
tan
(
x
)
cot
(
x
)
)
=
1
More at x→0 from the right
lim
x
→
1
−
(
tan
(
x
)
cot
(
x
)
)
=
1
\lim_{x \to 1^-}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
x
→
1
−
lim
(
tan
(
x
)
cot
(
x
)
)
=
1
More at x→1 from the left
lim
x
→
1
+
(
tan
(
x
)
cot
(
x
)
)
=
1
\lim_{x \to 1^+}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right) = 1
x
→
1
+
lim
(
tan
(
x
)
cot
(
x
)
)
=
1
More at x→1 from the right
lim
x
→
−
∞
(
tan
(
x
)
cot
(
x
)
)
\lim_{x \to -\infty}\left(\tan{\left(x \right)} \cot{\left(x \right)}\right)
x
→
−
∞
lim
(
tan
(
x
)
cot
(
x
)
)
More at x→-oo
The graph