We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\cot{\left(x \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\sin{\left(2 x \right)} \cot{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(2 x \right)}}{\frac{d}{d x} \frac{1}{\cot{\left(x \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 \cos{\left(2 x \right)} \cot^{2}{\left(x \right)}}{\cot^{2}{\left(x \right)} + 1}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 \cot^{2}{\left(x \right)}}{\cot^{2}{\left(x \right)} + 1}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{\cot^{2}{\left(x \right)} + 1}}{\frac{d}{d x} \frac{1}{2 \cot^{2}{\left(x \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{1}{\left(2 \cot^{2}{\left(x \right)} + 2\right) \left(- \frac{\cot^{4}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \cot^{2}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{1}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{2 \cot^{2}{\left(x \right)} + 2}}{\frac{d}{d x} \left(- \frac{\cot^{4}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \cot^{2}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{1}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{\left(2 \cot^{2}{\left(x \right)} + 2\right)^{2} \left(- \frac{\left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{4}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{2 \left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{2}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{\left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{\left(2 \cot^{2}{\left(x \right)} + 2\right)^{2} \left(- \frac{\left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{4}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{2 \left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{2}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{\left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right)$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)