Mister Exam

其他计算器:


cot(-1+x)^(-1+x)

函数极限 cot(-1+x)^(-1+x)

v

用于有限点:

图像:

分段定义:

解答

You have entered [src]
        -1 + x        
 lim cot      (-1 + x)
x->1+                 
$$\lim_{x \to 1^+} \cot^{x - 1}{\left(x - 1 \right)}$$
Limit(cot(-1 + x)^(-1 + x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
        -1 + x        
 lim cot      (-1 + x)
x->1+                 
$$\lim_{x \to 1^+} \cot^{x - 1}{\left(x - 1 \right)}$$
1
$$1$$
= 1.0018946609205
        -1 + x        
 lim cot      (-1 + x)
x->1-                 
$$\lim_{x \to 1^-} \cot^{x - 1}{\left(x - 1 \right)}$$
1
$$1$$
= (0.998098389971421 - 0.000758147498535553j)
= (0.998098389971421 - 0.000758147498535553j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-} \cot^{x - 1}{\left(x - 1 \right)} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cot^{x - 1}{\left(x - 1 \right)} = 1$$
$$\lim_{x \to \infty} \cot^{x - 1}{\left(x - 1 \right)}$$
More at x→oo
$$\lim_{x \to 0^-} \cot^{x - 1}{\left(x - 1 \right)} = - \tan{\left(1 \right)}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cot^{x - 1}{\left(x - 1 \right)} = - \tan{\left(1 \right)}$$
More at x→0 from the right
$$\lim_{x \to -\infty} \cot^{x - 1}{\left(x - 1 \right)}$$
More at x→-oo
Numerical answer [src]
1.0018946609205
1.0018946609205
图像
函数极限 cot(-1+x)^(-1+x)