$$\lim_{x \to 1^-} \cot^{x - 1}{\left(x - 1 \right)} = 1$$ More at x→1 from the left $$\lim_{x \to 1^+} \cot^{x - 1}{\left(x - 1 \right)} = 1$$ $$\lim_{x \to \infty} \cot^{x - 1}{\left(x - 1 \right)}$$ More at x→oo $$\lim_{x \to 0^-} \cot^{x - 1}{\left(x - 1 \right)} = - \tan{\left(1 \right)}$$ More at x→0 from the left $$\lim_{x \to 0^+} \cot^{x - 1}{\left(x - 1 \right)} = - \tan{\left(1 \right)}$$ More at x→0 from the right $$\lim_{x \to -\infty} \cot^{x - 1}{\left(x - 1 \right)}$$ More at x→-oo